Vibration reduction (optical image stabilization), electronic aperture control (E), and, not least, a Phase Fresnel lens element (PF) which makes it possible to build the lens much smaller and lighter than before. Canon has used this technology for years, and they call it "Diffractive Optics" (DO).
This lens is a moderate telephoto prime. However, I think many Nikon 1 fans will see it as an alternative to the native Nikon 1 70-300mm f/4.5-5.6 as an ultra long tele lens, at 810mm f/4 equivalent, using the Nikon FT-1 adapter. How does this work? In this article, I aim to find out and make the choice easier for you.
Here is what this combination looks like, with the Nikon 1 V3 camera:
Note the optional Nikon RT-1 tripod mount ring. Do you need this tripod collar? I would say not really. If you use the Nikon 300mm f/4E lens on a DSLR, you can use the camera's own tripod mount. After all, the lens is not very heavy.
And if you use the lens on a Nikon 1 camera, you can use the tripod mount included in the Nikon FT-1 adapter. I got the optional Nikon RT-1 tripod collar mostly for affixing a strap, as I don't like carrying the combo in the Nikon 1 camera strap eyelets.
Here are the two lenses compared. As you see, the Nikon 1 70-300mm f/4.5-5.6 can be collapsed for transport, and is very compact in this way:
Nikon 1 70-300mm f/4.5-5.6 (left) and Nikon 300mm f/4E PF VR (right)
When extended, and with the supplied hoods mounted, the Nikon 300mm f/4E PF VR becomes the shorter of the two, due to the Phase Fresnel technology. Note that I have mounted the Nikon FT-1 adapter to the lens below, for the most relevant size comparison, and it is still shorter!
Nikon 1 70-300mm f/4.5-5.6 (left) and Nikon 300mm f/4E PF VR (right). In the background is the Sigma 150-600mm f/5-6.3 Sports for DSLRs
In the picture, I also included the Sigma 150-600mm f/5-6.3 Sports for DSLR cameras. When used on a crop DSLR, it has an equivalent reach of 900mm, and is a compelling alternative as an affordable ultra long tele lens. For that reason, I am including it in this comparison, even if I don't use it on Nikon 1 here. I have previously written about using this enormous lens on Nikon 1, and you can read about it here.
Specifications
Lens | Nikon 1 70-300mm f/4.5-5.6 | Nikon 300mm f/4E PF VR | Sigma 150-600mm f/5-6.3 Sports |
Announced | Mar 13, 2014 | Jan 6, 2015 | Sep 12, 2014 |
Weight | 560g | 755g | 2860g |
Diameter | 63mm | 89mm | 121mm |
Length (including Nikon FT-1) | 108mm | 148mm (178mm) | 290mm |
Front lens thread | 62mm | 77mm | 105mm |
Lens elements/groups | 16/10 | 16/10 | 24/16 |
Equivalent focal length range | 190-810mm | 810mm (on Nikon 1) | 230-900mm (on APS-C DX format) |
Image stabilization switch | No | Yes: Off/Normal/Sports | Yes: Off/Mode 1/Mode 2 |
Focus switch | No | Yes: "A/M", "M/A", and "M" | Yes: "AF", "MO", and "MF" |
Focus delimiter switch | 2 modes: Full/Limit (7m-infinity) | 2 modes: Full/Limit (3m-infinity) | 3 modes: Full/2.6m-10m/10-infinity |
Minimum focus distance | 1m | 1.4m | 2.6m |
Using the 300mm PF on Nikon 1
When mounting the Nikon 300mm f/4E PF on a Nikon 1 camera with an FT-1 adapter, it behaves mostly like a native Nikon 1 lens. With some exceptions:
- You cannot use the AF-A focus mode. Only AF-S and AF-C are available.
I don't see this as a major limitation. If you are photographing a bird inside twigs, for example, you will need AF-S for the best accuracy. In AF-A mode, the camera may choose to re-focus while you are re-framing the picture. And for fast moving objects, I don't think that AF-A quickly enough changes to continuous autofocus: You must set AF-C from the start anyway.
- Only the centre autofocus spot can be used. Hence, you can only focus on items in the very centre of the image frame.
- The camera will not autofocus during video recording.
It could be that future Nikon 1 cameras will change this, but all Nikon 1 cameras to date have these restrictions.
Further, if you are used to using Nikon DSLRs, the lens behaves in differently to what you might expect in these two areas:
- On DSLRs, the Vibration Reduction (VR) is only activated when you half press the shutter. When using it on a Nikon 1 camera, the VR is activated all the time, as long as the camera is powered on.
This is consistent with native Nikon 1 lenses, and probably drains the battery somewhat quicker. - If you stop down the lens, it will use the specified smaller aperture even before you take the picture, up to f/5.6. If you set an aperture smaller than f/5.6, then it will stay at f/5.6 until you snap the photo. This is unlike DSLRs, where the lens retains at f/4 until you actually take the picture.
Native Nikon 1 lenses also behave in the same way: Setting any aperture larger than f/5.6 leads to a change also during live view and autofocus.
Image quality
To test the image quality, I have put the lenses on a tripod, with a shutter delay for the most stable shots, and used a low ISO. With the two Nikon lenses, I used the Nikon 1 V3 camera.
And with the longer Sigma lens, I used the Nikon D3300 DSLR. While this is the least expensive Nikon DSLR, it does have the most recent 24MP APS-C sensor from Sony, so the image quality should not be an issue. I used live view for the most accurate CDAF focus.
Here are results at various focus distances. Short focus distance (about 2.5m):
Nikon 1 70-300mm f/4.5-5.6 | Nikon 300mm f/4E PF VR | Sigma 150-600mm f/5-6.3 Sports |
First, let's note that the angle of view is slightly different between the two first lenses here, even if the focus distance and focal length is the same. What's going on here, is that the focal length is always specified at infinity focus. Closer to the minimum focus distance, the focal length may vary. This is especially common for internal focus lenses. This phenomenon is often called "focus breathing".
Here are 100% crops from the upper left part of the images, for better comparison:
We see here that the Nikon 300mm f/4E is the best lens. It is quite good already wide open, but improves further when stopping down to f/5.6.
These were taken at medium focus distance, about 25m:
Nikon 1 70-300mm f/4.5-5.6 | Nikon 300mm f/4E PF VR | Sigma 150-600mm f/5-6.3 Sports |
Here are 100% crops from the centre of the images, for better comparison:
This shows that the Nikon 300mm f/4E is the best contestant here. It is not optimal wide open at f/4, as one could expect, but it becomes very good at f/5.6.
As for the Sigma lens, I think the focus must have been slightly off here, as I have certainly seen it sharper earlier.
I also took comparison images at a far 60m distance, and they confirmed the same trend, that the Nikon 300mm f/4E is the best of the lenses in terms of sharpness.
Chromatic Aberrations (CA)
When I tested the Nikon 85mm f/1.8G on Nikon 1, I found that while Chromatic Aberration (CA) effects are automatically removed by in-camera processing in Nikon DSLRs, they are not when using it on Nikon 1.
With this in mind, I was rather happy to see that CAs are no problem at all when using Nikon 300mm f/4E on Nikon 1. I interpret this to mean that the lens corrects for CAs optically, with no need for software corrections.
Flare and bokeh
One disadvantage of the Phase Fresnel construction is more proneness to flare. This can be a quite important issue with long lenses, as flare can kill your contrast if you have a strong light source in the background, e.g., the sky.
To test this, I have taken a picture with a bright background with both lenses, for comparison. Click for larger images:
Nikon 1 70-300mm f/4.5-5.6 | Nikon 300mm f/4E | |
f/4 | ||
f/5.6 |
The exposure is slightly different here. But beyond that, I don't think there is any issue with flare or loss of contrast with the 300mm f/4E lens. The bokeh also looks quite good with both lenses.
Focus speed
The focus is usually quite fast with both lenses. When I use the Nikon 1 V3 camera, I start seeing the focus becoming annoyingly slow at around EV10 with the 300mm f/4 lens, which corresponds to f/4, 1/60s, ISO 1600. So this is already quite dark.
In these situations, the camera will more often hunt back and forth across the whole focus range, suggesting to me that PDAF is not functioning, and the camera is reverting to CDAF.
Here is a "studio" focus test at EV12, in which I pitch the two lenses against each others. I placed a subject 3 meters from the camera, and timed the focus. Both lenses were set to around infinity when starting the test.
See the comparison here:
The results are summarized here:
Lens | |||
Focus delay | 1.07s | 0.55s | 0.78s |
We see here that the Nikon 300mm f/4E is much faster than the native Nikon 1 70-300mm lens.
I would have expected the other way around, to be honest, as the CX 70-300mm lens is designed for use specifically on Nikon 1 cameras.
Further, we see that the 300mm lens gains some focus speed when stopping down. This is natural, as a smaller aperture requires slightly less focus accuracy. As I mentioned earlier, when using the lens on a Nikon 1 camera, the camera will stop it down during autofocus, up to f/5.6. This is unlike when using it on DSLR cameras.
The 300mm f/4E features a light, high frequent ticking sound when the focus operates. This is not going to be audible for anyone besides the photographer, so it doesn't bother me.
Both lenses have focus delimiter switches, and I certainly recommend using them, when you have subjects far away. That is going to increase the focus speed significantly.
For birds in flight, I prefer the native Nikon 1 70-300mm f/4.5-5.6 lens. For three reasons: The aperture f/5.6 is more than sufficient for me, since there is normally more light available when birds are out in the open.
Also, only the centre focus point is usable with the Nikon 300mm f/4E PF, which means that you must keep the bird in the very centre of the frame to get the focus right. This can be tricky. Finally, the native lens is lighter, and easier to point around for a longer time.
Read more about using the Nikon CX 70-300mm lens for birds in flight here.
If you do want to use the Nikon 300mm f/4E for birds in flight (BIF) on a Nikon 1 camera, I suggest stopping it down to f/5.6. That will make the autofocus quicker, and, as the camera uses f/5.6 during liveview, it makes it easier for you to see birds slightly out of focus through the electronic viewfinder.
Image stabilization
All the lenses here have optical image stabilization, Nikon calls it "Vibration Reduction". I think it is hard to compare them in terms of effectiveness. But I certainly see that enabling the VR function on both the Nikon lenses does improve the stability.
Based on my experience, I could guess that the Nikon 300mm f/4E is slightly better at stabilizing the image, but I couldn't say for sure.
Here is a collection of videos which I recorded handheld with the Nikon 300mm f/4E on the Nikon 1 V3 camera, with VR enabled. I had no support whatsoever.
Can you identify the bird species?
I deliberately rendered these videos without any software stabilization in post processing, to show you how they look like straight from the camera.
This illustrates the effect of the Vibration Reduction: You can fairly successfully handhold the camera while recording video, despite the 800mm equivalent reach. If I had used software stabilization in addition, the videos would have been very good.
Example images
All the pictures were taken handheld with the Nikon 1 V3 camera.
ISO 1600, 1/200s, f/4:
Detail at 100%:
ISO 1100, 1/500s, f/4.5:
Detail at 100% crop:
Other uses of the lens
If you are considering to buy this lens for use as an ultra long tele on Nikon 1 cameras, you may worry about the future: Is Nikon going to continue the Nikon 1 lineup or not? There appears to be some uncertainty to this.
With this respect, it is good to know that there are alternatives. You can, for example, get 1.4x tele converter and use the lens on a crop camera like the Nikon D7200.
That gives you an equivalent reach of 300mm x 1.4 x 1.5 = 630mm at an aperture of f/5.6. With a DSLR, you'll have access to using all the focus points, and the AF-C subject tracking is very good.
Also keep in mind that this lens is one of the, still, relatively few E-lenses. That means that there is no aperture lever in the mount, the aperture is set electronically.
As the mount is completely electronic, this means that the lens is very futureproof. As new mirrorless mounts are launched, it is likely that fairly inexpensive adapters will appear for mounting this lens as well. For example, Commlite has an adapter in the pipeline for Sony E mount.
Conclusion
The Nikon 300mm f/4E works very well on Nikon 1 cameras. It operates much as you would expect, and the image quality is very good. Used at around f/4.5-f/5.6, the results are top class.
I bought the lens to have a low light alternative to the native Nikon 1 70-300mm f/4.5-5.6 lens, not because I think the native lens is problematic in terms of image quality. I think it is just fine.
But the f/5.6 means that I have to go home earlier than the other guys when photographing birds in the evening. Adding one more stop with the Nikon 300mm f/4E sure does help!
The lens is not ideal for birds in flight, as you must pinpoint the bird in the very centre to achieve focus, but for stationary birds, it works very well.
The lens did meet my expectations, and I am happy with the results.
Further reading
Nikon 1 70-300mm f/4.5-5.6 review
Birds in flight with Nikon 1 70-300mm
Sigma 150-600mm f/5-6.3 Sports
Comparison between CX and DX sensor size for bord photography
Using SIgma 150-600mm f/5-6.3 Sports on Nikon 1